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DROPLET INTERACTION OF ADIABATIC DENSE SPRAYS 

Suk Ho Lee* and Hho-Jung  Kim* 

(Received November 6, 1990) 

The effect of the droplet interactions which arise in the interior of dense sprays is examined by considering the vaporization of 
a single droplet in a confined region or "bubble". In the present study the temporal variation of vaporization was determined at 
two levels of approximation, such as "film analysis" and "quasi-steady analysis." Thermodynamic analysis was used to determine 
the final equilibrium conditions which must be satisfied by the unsteady solutions. The results of these two approximate approaches 
to the unsteady problem were found to be in good agreement providing support for the use of the relative]!y simple film theory and 
clearly indicated that the d2-vaporization law cannot be applied in dense sprays. It was shown that the transition between complete 
and incomplete evaporation is very sensitive to the initial air temperature and to the ratio of the mass of the liquid to the air. In 
order to gain a preliminary indication of the effect of spray size distribution on the vaporization process the film analysis was 
extended to sprays with a bimodal droplet size distribution, and it was found that then the kinetics of waporization also depends 
on the ratio of the mass of the smaller to that of the larger droplets. 
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Quasi-Steadiness 
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Tempera tu re  
Internal  energy 
Volume 
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Nusselt  number, Nu = h 2rs/,t 
Sherwood number, Sh = kin2 rs/ D 
Termal  diffusivity of the gas, a=A/ogcp 
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Its 
Air  property 
Averaged  condit ion 
Condition at the bubble surface 
Equil ibrium condit ion 
Final s tate or liquid fuel proper ty  
Mixture  gas  
Initial state 
Liquid proper ty  
Reference condit ion 
Droplet  surface 
Vapor  proper ty  
Smal ler  droplet  
Larger  droplet  

1. INTRODUCTION 

Extensive research has been conducted on the evapora t ion  
and combust ion of single droplets~ as reviewed by Wil l iams 
(1973), Faeth(1977) and Law(1982). Typical ly,  the droplets 
are  considered to be in an infinite medium, or in a spray 
which is so dilute that  vapor iza t ion  will be complete.  Recent- 
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ly, both experiment and theory have shown that in many 
cases sufficiently dense fuel sprays many evaporate or burn 
as a group rather than as individual droplets. Then droplet 
interactions may have profound effects on the efficiency, 
stability, and pollution characteristic of such sprays 
(McCreath and Chigier, 1973). The interior of dense sprays 
may be sufficiently saturated that vaporization can only 
occur near the edge of the cloud where the spray comes into 
contact with the surrounding medium, and it is unlikely that 
the single droplet results will be applicable in this case. It is 
also of interest to determine the time required for a spray 
injected into a given medium to reach saturation in relation 
to other characteri,;tic times associated with spray combus- 
tion. The effects of the droplet interactions which arise in 
these situations can be studied by considering the vaporiza- 
tion of a single droplet in a confined region or "bubble", the 
size of which can be related to the spray density, and this is 
the subject of the present study. 

Various aspects of dense spray droplet interactions have 
been studied by a number of investigators. A simple math- 
ematical model based on the cellular method was proposed by 
Zung (1967). This method consists of dividing the spray into 
a number of identical cells, each occupied by one droplet, 
reducing the problem to the consideration of a single droplet. 
By assuming that the vapor concentration at the edge of each 
cell is approximatel~z equal to the average concentration and 
that there is no mas~; transfer between cells, an expression for 
the cloud lifetime for both the saturated and unsaturated 
cases was derived in a closed form. Law (1977) studied the 
unsteady droplet combustion caused by droplet heating by 
assuming quasi-stedy gas-phase processes and a uniform 
droplet temperature, and also investigated adiabatic spray 
vaporization by analyzing the coupled problem of the vapor- 
ization of an ensemble of droplets in a gaseous medium whose 
properties are continuously being modified by vaporization. 
A set of criteria establishing the mixture properties required 
for achieving complete vaporization was established. 

The evaporation of a droplet inside a "bubble" was consid- 
ered in a recent study by Tishkoff(1979). The gas-phase 
quasi-steady equations were used with approximate bubble 
surface boundary conditions. It was found that te initial 
vaporization rate of a confined drop exceeded that of the 
corresponding single droplet, but the subsequently vaporiza- 
tion was retarded by cooling and by the increased vapor 
concentration in the surrounding bubble volume. The bubble 
size cr'itically affected evaporation since as it decreased from 
large values where the droplet evaporated completely to 
lower values, saturation occurred before completee vaporiza- 
tion, and the droplet radius at saturation was shown to be a 
decreasing function of the bubble diameter. A theory of 
nondilute spray evaporation taking into account the separa- 
tion distance between droplets has also been developed by 
Bellan and Cuffel(1983). This theory was based upon the 
global conservation equations for the two-phase mixture and 
the conservation equations for a droplet evaporating in finite 
surroundings. In this model each drop was also isolated in a 
sphere of influence ; however, the model differs from both the 
Tishkoff's bubble and Zung's cell models because it did not 
require zero mass transfer between cells and because the 
conditions at the edge of the sphere of influence were not 
imposed, but computed as a consequence of the droplet inter- 
atctions. The Bellan-Cuffel model was also used to develop a 
criterion for complete evaporation before saturation for 
nondilute sprays. 

The present study considers the vaporization of a single 
droplet in a confined, insulated medium. A number of approx- 
imations can be introduced to simplify the problem, and three 
levels of approximation have been investigated here. At the 
simplest level a purely thermodynamic analysis is adopted to 
determine the final equilibrium state and the conditions for 
complete vaporization. However, this analysis doed not 
provide information about the vaporization rate or the ap- 
proach to the final state, but indicated only the conditions 
which must be satisfied by the unsteady vaporization solu- 
tions at infinite time. Film theory, which assumeds that the 
droplet and gas temperatures are uniform and the vaporiza- 
tion and heat transfere occur accross a thin film at the 
droplet surface, has been used to compute transient vaporiza- 
tion at the next level of approximation. Finally, a more 
complex, quasi-steady analysis has been used in which the 
variation of gas phase composition and temperature have 
been considered in determining the mass and energy transfer 
to the droplet surface has been at the next level of approxi- 
mation. The results of these two approaches were found to be 
almost identical thus jusifying the use of the relatively simple 
film theory in more complex calculations. For a preliminary 
assessment of the influence of particle size distribution on 
vaporization, the film theory also has been Used to study the 
vaporization of two droplets of different sizes in a bubble, 
representative of a spray with a bimodal size distribution. 
The present anaysis is similar to Zung's cellular method in 
the the condition of zero heat and mass transfer was imposed 
at the bubble surface, however, is different from his model in 
that the convective terms in the conservation equations are 
considered. The internal energy of the vapor, which was not 
considered in Tishkoff's model, is taken into account in the 
present analysis. 

The results of these droplet in bubble studies are then used 
to evaluate the vaporization characteristics of dense sprays. 
The results clearly indicate that the d2-vaporization taw 
cannot be applied in dense sprays. It is shown that the transi- 
tion between complete and incomplete evaporation is very 
sensitive to the initial air temperature and to the mass ratio 
of the liquid to the air. For bimodal sprays the evaporation 
characteristics also depend on the mass ratio of the smaller to 
the larger droplets. 

2. EVAPORATION OF SINGLE DROPLET 

Since the evaporation of liquied droplets in a hot gas 
medium is associated with a change in the heat content of the 
two phases, the rate of this process will depend upon the 
interphase rates of heat and mass transfer. As a first step in 
investigating transient evaporation in dense sprays the vapor- 
ization of a single droplet of intial radius r~i in an isulated, 
rigid bubble is investigated for various bubble radii b, and 
initial gas temperatures Ta,. It is assumed that at time t =0, 
the droplet at temperature Tsi is inserted into the bubble 
filted with dry gas to approximate the initial conditions when 
a spray is first injected into a dry gaseous medium. 

2.1 Thermodynamic Analysis(Approach I ) 
Since the droplet under consideration is in a confined 

medium or bubble, the temperature of the air will decrease 
and that of the liquid will increase as ~he droplet evaporates. 
Thus, heat transfer rates from the air to the liquid will 
decrease and in the case of incomplete vaporization a final 
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equilibrim state is reached in which the liquid and gas temper- 
atures are equal. 

For given initial values of droplet radius r~, droplet 
temperature T~, air temperature To~, and bubble radius b, the 
final droplet radius r / a n d  the final equilibrium temperature 
T /were  determined using the mass and energy conservation 
equations, and the equation of state of the liquid vapor. 
Conservation of mass requires that : 

(1) 

Since the mass of the air inside the medium does not change 
during evaporation rn~g=rn~f=m,, ;however,  some of the 
liquid will vaporize, and it then follows from Eq. (1) that:  

4 �9 3 3~ mv/=-~zcpztrs~ -- re ; (2) 

Since the bubble is insulated it follows from energy conserva- 
tion that : 

rn~coT~+ m~c, T~i= m~ co Te+ m~,~c] T/ 
+ moe (coTe+ L) (3) 

Assuming the air and liquid vapor are perfect gases, the 
equation of state for the liquid vapor becomes : 

where the term ln(p~R~T/) in Eq.(8) is near ly  constant  
especially for the range of typical final temperatures 300 < T/ 
< 400~ and is smaller than the other terms, thus is may be 
assumed that ln(p~R, Te) as a constant. 

Equation(8) provides a simple, approximate relation be- 
tween the initial air tepmerature and the bubble radius at 
which evaporation will just be complete. It is interesting to 
note that these relations are independent of the initial droplet 
temperature T,~, and this is based on the fact that Eq. (6) is 
based on the assumption that the internal energy of the 
droplet is small compared to the heat of vaporization. It also 
follows that vaporization will be complete if, for a given 
bubble radius, the initial air temperature To, is higher than 
that given by Eq. (8). 

The above thermodynamic analysis was used to compute 
the final dimensionless droplet radius Y/(=r/ /r~i )  as a 
function of dimensionless bubble radius b ( =  b~ r~) for 100/~ 
m water droplets at an inital temperature T,~= 300~ and for 
Ta~=600~ 800~ and 100~ in Fig. 1. Similar calculations 
also were made for n-heptane in order to compare the results 
of the rpesent analysis with those of Tishkoff(1979). It can be 
seen that saturation occurs before complete evaporation for 
small b but vaporization becomes complete as b increases 
beyond values on the order of 20 for the parameters consid- 

P~ V, = moR~T~ (4) 

where V~ is the volume of the liquid vapor, 

4 a V~ = X ~  (r~i - r~).  

The vapor pressure Po/as a function of the final temperature 
T/ can be obtained from the Cox-Antoine vapor pressure 
correlation equation(Reid, 1977), and is given by : 

L Po=c~+c2/(T~+c~) (5) 

where c~, c2, and ca are correlation constants. 
From Eqs. (2) ~ (5), the final droplet radius r / a n d  the final 

equilibrium temperature T/ can be obtained by trial and 
e r r o r .  

A simple, rather approximate relation for the demarcation 
between complete and incomplete evaporation can be 
obtained for a given bubble radius and initial air temperature 
by assuming that the change in the energy of the air is used 
to vaporize the droplet completely. Then the energy and mass 
balance euqations become for b3>>r~p : 

and 

4 a 4 a 
- fxb  poca( Tai-  T/) - ~ r r ~ i  p,L 

4 a 4 ,a Po 
~zrr~ p ~ z r o  R~T/ 

(6) 

(7) 

Just at the point of complete vaporization the gas vapor 
mixture will be completely saturated, and the vapor and air 
temperatures will be equal to T/. From Eqs. (6), (7), and the 
vapor pressure relation (5) it follows that:  

_ p t  rs l  3 L C2 

In(p~R~T/) --I. --c, 

(8) 
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ered here. It is readi!ly shown from Eqs. (3) and (4) that the 
variation of F /  with b is independent of the individual 
droplet or bubble radius but depends only on the fluid proper- 
ties. The variation of the final equilibrium temperature with 
bubble radius and initial air temperature is shown in Fig. 2, 
and, as is to be expected, the final temperature approaches 
the initial air temperature as the bubble radius increases. The 
variation of dimensionless bubble radius b with the dimen- 
sionless temperature T~ at the point of complete vaporiza- 
tion is shown in Fig. 3. The upper right side of the curves is 
the complete evaporation region, and the lower left side of 
the cruves is the incomplete evaporation region. The bound- 
aries between complete and incomplete vaporization were 
computed for water, ethanol, n-heptane, and n-decane using 
both the exact  thermodynamic theory and the approximate 
relation given by Eq. (8). The exact  and approximate results 
are in excellent agreement at high values of T~, where the 
effect of intial droplet temperature, which is neglected in the 
approximate theory, should be small. The exact  and approxi- 
mate results diverge significantly at lower values of ;P~ 
where the approximate theory overestimates the bubble 
radius required for complete vaporization. It is interesting 
that the exact  results for the liquids considered here all seem 
to fall on the same currve. 

2.2 T r a n s i e n t  V a p o r i z a t i o n  A n a l y s i s  
(1) Evaporation Based on the Film Theory(Approach II) 
Since the temperature and concentration changes are gen- 

erally confined to a narrow boundary layer region between 
the liquid and gas phase, the film theory as described by 
Marshall(1955) can be applied here. This method, called 
Approach II here, is perhaps the simplest which can be sued 
to deal with the unsteady vaporization problem. This may be 
used to compute transient vaporization which was not provid- 
ed in the thermodynamic analysis. 

Assumptions used in the thermodynamic analysis are 
retained in this analysis and both the droplet and air temper- 
atures are taken to be spatially uniform but temporally 
varying. Then, the rate of mass transfer from the saturated 
liquid surface is:  

r 

ra, = - 4 7rr~2 p , ~ - =  k~47cr, a ( P , -  p~) (9) 

where kg is a mass transfer coefficent. 
Energy conservation requires that the rate of heat transfer 

conducted across the droplet surface must supply the latent 
heat of vaporization and the heat required to change the 
droplet temperature so that : 

, 4 a d T ,  �9 a , ~  
ra,L •  p lc , - -~ -= h4~rr, t l a -  T,) (10) 

Experimental studies have established empirical correla- 
tions for the heat and mass transfer coefficients, h and kg. 
For the present stagnant case the Nusselt number, N~, and 
the Sherwood number, Sh, were taken as 2.0 so that : 

h=  ~ Dp~ 
rs' kg = --~'7~f (11) 

Since the total energy of the liquid and gas phase in the 
insulated bubble must remain constant, it follows that : 

dT~ . dT .  
m o c a - d T - -  m,cl T, + m , c , ~  -- ra~cv Ta 

dT~ 
+ m v C v - - ~ 7 - - -  r a / L  = 0 ( 1 2 )  

Applying the Cox-Antoine vapor pressure relation (5) and 
the equation of state for the liquid vapor (4), three ordinary 
differential Eqs.(9),(10) and (12) were solved numerically 
with initial conditions To (0) = Ta,, T~ (0) = T,i, r ,  (0) = r,i  
for different values of the initial aire temperature T~i and 
bubble radius b. 

(2) The Quasi-Steady Analysis of Gas Phase Mass and 
Heat Trnasfer(Approach lid 

Actually the temperature and vapor mass fraction in the 
atmosphere surrounding the droplet will not he uniform, and 
the heat and mass transfer coefficient,; used in the film theory 
provide a means of representing the effects of temperature 
and concentration variations in the gas which determine the 
heat and mass transfer to the droplet. Approach III was 
undertaken to investigate the importance of spatial varia- 
tions in gas phase composition and temperature. Overall, as 
already indicated in the introduction, the bubble problem is 
unsteady; however, Crespo and Linan(1975) have shown 
that: the use of the quasi-steady approximation leads to 
negligible error in determining the vaporization or combus- 
tion of unconfined droplets. On this basis the quasi-steady 
analysis was applied to the confined droplet vaporization 
problem under consideration here although, as will be seen 
below, this does lead to some difficulties in satisfying the 
boundary conditions at the bubble surface. Assumptions used 
in the thermodynamic analysis are are still assumed to be 
valid, and the assumption of uniform droplet temperature has 
been retained. Also, it is assumed that Lewis Numeber, Le,  is 
equal to one, and that the gas phase pressure is spatially 
invariant. 

Following Law (1980) the quasi-steady solutions for r , <  r 
< b can be expressed in the following form : 

Y~ = 1 -  ( 1 -  Yjb) Exp{ rat (1  1~l  
4 zp-bT-7-VT--a / J (13) 

and 

where 

T :  T, -c~-p{1-Exp { ra, ( r ,  4n.o~D~.:kT- 1)} } (14) 

c q,_( T o -  Ts) 
H =  (1=  ~ ) - - ,  (15) 
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rh~=4zpDr~ l n ( l + B )  (16) 
1 rs 

b 

B -  c p ( T ~ - T A  
H (17) 

determine the variation of the bubble surface temperature To 
( t ) :  

dTo dT~ 
m a C p ~ - - :  -- m~L-- m~c~ d/ 

H is an effective latent heat of vaporization which includes 
the actual latent heat of vaporization and the energy used to 
heat the droplet interior per unit mass of fuel vaporized, and 
is denfined by the equation below : 

4zrrs2A~r-r . . . .  r , 4 3 dT~ = rh~H= rhlL• p~c~-~ (18) 

It is assumed that the vapor and the liquid are in equilib- 
rium with each other. 
Hence, the fuel vapor mass fraction at the droplet surface is 
calculated from 

P~ Y~/ W 
P =  Y j ~ / W + ( 1 -  YsA/W~ (19) 

Note that while H depends on the derivat ive dT~/dt,  the 
quasi-steady solution above treats T~ and To as constants. 
The variation of T~ and To with time can be determined only 
by considering overall energy conservation as described 
below. Another difficulty with the quasi-steady solution is 
that the temperature gradient at the bubble surface remains 
non-zero after all permissible boundary conditions have been 
applied, and this is inconsistent with the adiabatic boundary 
condition there. 

In order to deal with these difficulties it is necessary to 
satisfy overall energy conservation at each time step of the 
quasi-steady calcualtion. The quasi-steady solution shows 
that there is a very steep temperature and mass fraction 
gradient at the droplet surface as long as r~/b remains small. 
Hence it is reasonable to assume that the gas temperature 
outside the droplet is constant and equal to To(t), the bubble 
surface temperature, and to equate To(t) to an average gas 
temperature T~ (t) determined from the relation : 

T~o= f )4zcr~pcpT ( r, t) dr 

-~ zrpcp ( b 3-  r~ ~) 
~To ( t )  (20) 

This relation neglects the energy of the vapor which, 
however is included in Eq. (12) used in the present calcula- 
tions. As shown below Ticknoff 's approximation has a 
significant effect of the results. 

From the initial conditions T~(r,O)= T~i, Ts(0)= T~, r~ 
(0) - r~, the mass fractions Yto and Ys~ can be evaluted using 
the 4th order Runge-Kutta Method. 
Figs. 4 and 5 show the effects of the bubble radius and the 
initial air temperature on transient evaporation. It can be 
seen that the droplet radius and the temperatures of the air 
and liquid at first change rapidly but then approach the 
equilibrium state quite slowly. Calculations were made using 
both approaches D and III and the results were found to be in 
excellent agreement providing justification for the use of the 
simpler flim theory, at least for the range of parameters 
considered here. It was also found that the final droplet 
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A similar argument applies to the vapor mass fraction so 
that : 

Ys(b, t) = Yo(t) ~ Yav(t) (21) 

It is now possible to compensate for the unsteady effects at 
each time step by computing the temporal variation of the 
liquid and gas temperatures Ts(t)and To(t) and the vapor 
mass fraction Yo(t) from the equations for the conservation 
of the total energy and mass. The conservation of the total 
energy at any same as in Eq. (12). Similarly, it follows from 
the conservation of the total mass of liquid plus vapor that : 

Y f b  - -  m y  _ Ysi 3 -  rfl (22) 

ma+a~ __Pa (b a_ r~P) + ' r t  si3-rs3"J p~ 

In his study of the droplet in a bubble Tishkoff(1979) used 
the following approximate energy conservation equation to 
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present analysis and by Tishkoff(1979) is shown in Fig. 7, and 
it can be seen that the results of the present study differ from 
those of Tishkoff because of the differences in the approxi- 
mate bubble surface boundary conditons as already 
mentioned above. 

3. EVAPORATION OF BIMODAL SPRAYS 

A knowledge of the interactive effect of sprays with gener- 
alized droplet-size distribution is important in determining 
the spray vaporization time and other evaporation character- 
istics. In order to provide a prelimiary indication of how 
polydisperse sprays evaporate without the complexity 

involved in dealing with the continuous distributions the 
results of the droplet in bubble analysis have been applied to 
the case of the vaporization of a bimodal spray. 

A key result of the analysis of single droplet case is that the 
film theory(Approach II) can be used to determine droplet 
vaporization provided that the diemensionless bubble radius 

is not too close to 1, or correspondingly that the droplet 
numnber density is not excessive. Assuming this to be the 
case, the bimodal spray is treated as an assemblage of small 
droplets of radius r~L with number density n~ and correspond- 
ingly large droplets of radius r,2 with number density nz. The 
gas vapor mixture between the droplets is taken to be unifor- 
m and heat and mass transfer occurs across a very thin film 
at the droplet surface. 

Using the film theory the rate of mass transfer from the 
saturated liquid surface for the smaller droplets and the 
larger droplets, respectively, now becomes 

. 2 dYsi " " Y 2 mn=-~zrnlr~l  p l ~ = K ~ l ~ z c n ~  .n(P~]--P~) (23) 

2 drs2 2 rh]2= -4rcnzr~z  p ] ~ f f - - =  kg247rn~r~2(P~z- P~) (24) 

Also, energy conservation equation at the droplet surface 
when applied to both the smaller and larger droplets yields 
the relations. 

radius and temperature computed using the transient analysis 
were in excellent agreement with the values computed using 
the thermodynamic analysis (Approach I ) which were 
shown in Fig. 1 and Fig. 2. Of course, to be consistent, the 
transient results must approach the final equilibrium values 
computed from steady state thermodynamic considerations. 
It is interesting to note from F~g. 5 that the variation of 
droplet radius with time becomes very sensitive to the dimen- 
sionless bubble radius b near the point of complete evapora- 
tion. 

The dimensionless time for both incomplete and complete 
evaporation is shown in Fig. 6 for water droplets with T,~= 
8000K, and T~= 300~ Here the time has been made dimen- 
sionless using the characteristic diffusion time as the referen- 
ce. The time r~ to reach equilibrium increases with increasing 

until ~ reaches the value for complete evaporation. After 
that the r~ decreases to the vaporization time of a droplet in 
an infinite medium. This behavior reflects the fact that for 
near unity very little vaporization occurs; however, near 
complete vaporization the rate is reduced by the relative]y 
high vapor concentration within the bubble. The variation of 
final droplet radius with bubble radius as computed in the 
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rn L +  4 z dTs2 2 12 ~ l r n 2 r s z  p ~ C l ~ =  h24~n2r~2 ( l ~ -  T~2) (26) 

Applying the conservation of the total energy, we obtain 

dT~ . .  - dT~, . 
m a C a ' ~ - -  ~ ' n l l C l  I 81 - -  ~ 1 2 C l  "1"82 "3f - m H c l ~ •  rnlzcx 

d T ~ ,  
dT~2dt +- ~h~c~Ta + m~co-d - i -~ -  (n~.+rh~z)L=0 (27) 

With the given initial conditons n~, nz, T~, T ~ =  T~2i, r~l= 
r~l~, r~2 = r+z~, there are five unknows r+l( t ) ,  r~2(t), T~(t), 
T~l ( t )  and T+2(t) with five Eqs.  (23, 24, 25, 26, 27). These 

ordinary differential equations have been solved using the 4th 
order Runge-Kutta Method. 

The results have been evaluated in terms of the ratio of the 
initial mass of the liquid to the air (defined as "mass ratio"), 
mla, or the ratio of the initial mas of the smaller to the larger 
droplets(defined as "mass loading ratio"), mlz. Calculations 
have been performed for a bimodal spray with 10/~m and 100 
#m water droplets at an initial temperature 300~ Th effects 
of mass ratio and mass loading ratio are displayed in Figs. 8 
and 9 which show that smaller droplets evaporate faster than 
larger droplets and both smaller and larger droplets evapo- 
rate completely as the mass ratio mla or the mass loading 
ratio m~ decrease. A typical example of the temperature 
variations during transient evaporation of the bimodal spray 
above are shown in Fig. 10 for into=0.5, rn12-0.1 and Ta~= 
600~ Both the liquid and air temperatures initially change 
rapidly and then slowly approach the equilibrium state. 
Particularly, due to the smaller droplet surface area, the 
temperature of the smaller droplets increases much faster 
thatn that of the [areger droplets and they evaporate faster 
than the larger droplets because of their larger surface to 
volume ratio. 

4. CONCLUSIONS 

A model for the evaporation of a single droplet in an 
adiabatic bubble has been developed. In considering transient 
evaporation it has been shown that the relatively sflnple film 
theory provides sufficient accuracy as long as the spray is not 
too dense. The results of the droplet in bubble calculations 
have been applied to the determination of the evaporation 
characteristics of monodisperse sprays. For a single droplet 
with a small dimensionless bubble radius b, decrease in the 
initial air temperature Tai wil cause transition from complete 
to incomplete evaporation and the conditions for the transi- 
tion have been established. The analysis was extended to 
sprays with a bimodal size distribution and the ratio of the 
mass of the liquid to the air, rnla, and of the mass of the 
smaller to the larger droplets, rn12, was found to have a large 
effect on ~aporization charactereistics of the cloud. 
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